

KOBELCO	本日の講演内容	24.04.19 コベルコ科研×日本電子 二次電池 in-situ SEM/ Windowless EDSセミナー	4
1 70			
2. <mark>リチ</mark>	ウムイオン電池の動向		
3. ⊐^	ジルコ科研におけるSEM観察評価		
1	最新設備(日本電子製 JSM-IT800SHL)のご紹介		
2	当社における評価・解析技術のご紹介		
4. 最	新事例の紹介		
र <u>ा</u>	こピュレータ+SEM複合装置を用いたリチウム析出In-situ観察とシミュ	レーション	
1	設備・実験手法の紹介、硫化物系 固体電解質上へのリチウム析出In-situ観察		
2	リチウム析出の温度依存性、およびリSE成型圧力依存性の評価		
3	シミュレーションと連携した要因考察		
5.終	わりに		
	©2024 KOBELCO RESEARCH INSTITUTE, INC.	離しくことで	料研

KOBELCO	本日の講演内容	24.04.19 コベルコ科研×日本電子 二次電池 in-situ SEM/ Windowless EDSセミナー	10
1. ⊐^ 2. IJ ∫ 3. <mark>⊐^</mark> ①	ジルコ科研 業容紹介 ウムイオン電池の動向 ジルコ科研におけるSEM観察評価 最新設備 (日本電子製 JSM-IT800SHL) のご紹介		
2	当社における評価・解析技術のご紹介		
4. 最新 マニ ① ② ③	新事例の紹介 ビュレータ+SEM複合装置を用いたリチウム析出In-situ観察とシミ 設備・実験手法の紹介、硫化物系 固体電解質上へのリチウム析出In-situ観察 リチウム析出の温度依存性、およびリSE成型圧力依存性の評価 シミュレーションと連携した要因考察	ュレーション	
つ. 旅会4	©2024 KOBELCO RESEARCH INSTITUTE, INC.	離しくよう	科研

KOBELCO	り 当社 最新設備のご紹介	24.04.19 コペルコ科研×日本電子 二次電池 in-situ SEM/ Windowless EDSセミナー	11		
導入機種	設備スペック概要 日本電子製 JSM-IT800 <shl></shl>	2			
主な特徴	高輝度電子銃 ^{照射電流100nA (5kV)} 電磁場重畳型レンズ 分解能0.7nm (1kV) 上方ハイブリッド検出器 (二次電子,反射電子) シンチレーター反射電子検出器 高速反射電子像観察 Gather-X (ウインドウレスEDS) 検出可能元素 Li~U 大気非暴露ベッセルによる不活性評価 モンタージュ機能 (自動観察+画像合成)による 高解像度データ取得				
拡張機能	二次電池の充放電In-situ SEM観察 (圧カ制御+温度制御) マイクロマニピュレータ複合化による局所通電評価 小型万能試験機複合化による引張・圧縮In-situ SEM観察		Q		
拡張性の高い最新設備を用い、ご要望の内容に応じたIn-situ観察など、 高品質かつ独自性の高い評価方案をご提案します。					
	©2024 KOBELCO RESEARC	H INSTITUTE, INC. 翻つへいつ	科研		

KOBELCO	本日の講演内容	24.04.19 コベルコ科研×日本電子 二次電池 in-situ SEM/ Windowless EDSセミナー	20
1. コ^	ルコ科研 業容紹介		
2.IJ ſ	ウムイオン電池の動向		
3.⊐^	ルコ科研におけるSEM観察評価		
1	最新設備(日本電子製 JSM-IT800SHL)のご紹介		
2	当社における評価・解析技術のご紹介		
4. 最新 マニ	新事例の紹介 ビュレータ+SEM複合装置を用いたリチウム析出In-situ観察とシミ	<mark>ュレーション</mark>	
1	設備・実験手法の紹介、硫化物系 固体電解質上へのリチウム析出In-situ観察		
2	リチウム析出の温度依存性、およびリSE成型圧力依存性の評価		
3	シミュレーションと連携した要因考察		
5.終	っりに		
	©2024 KOBELCO RESEARCH INSTITUTE, INC.	離しくこと	料研

KOBELCO	IJŦĊ	ウム析出挙動の温	度依存	生 考察	24.04.19 コベルコ科 二次電池 Windowl) 研×日本電子 28 in-situ SEM/ 28 ess EDSセミナー
	※ 80℃は0, 25, 50, 70℃の値の近似曲線より算出					この値の近似曲線より算出
測定方法	法	物性値	単位	RT	80℃	変化率
交流インピー	-ダンス	イオン伝導率	S/cm	2.42×10 ⁻³	2.22×10 ^{-2※}	920%
高抵抗測	则定	電気伝導率	S/cm	1.86×10 ⁻⁷	6.07×10 ⁻⁸	33%
+ / / \.=	2.5	インデンテーション硬さ	GPa	0.60	0.41	68%
アノインテンテーンヨン		ヤング率	GPa	13.2	10.9	83%
マンク率 電子・イオンの伝導性、および 機械物性値を調査した結果、 電子・イオンの伝導性の変化率が 顕著に高いことが分かった。 これらの物性値の変化により、 高温ほど表面近傍での析出が 優先的に生じたものと推察される。				[80℃] 電子伝導:低い イオン伝導:高い ビ ¹ 日前 日前 日前	プローブ 金属Li析出 質 極	
©2024 KOBELCO RESEARCH INSTITUTE, INC. 翻しいした特別						

